predict.textmodel_nb() implements class predictions from a fitted Naive Bayes model. using trained Naive Bayes examples

# S3 method for textmodel_nb
predict(
  object,
  newdata = NULL,
  type = c("class", "probability", "logposterior"),
  force = FALSE,
  ...
)

Arguments

object

a fitted Naive Bayes textmodel

newdata

dfm on which prediction should be made

type

the type of predicted values to be returned; see Value

force

make newdata's feature set conformant to the model terms

...

not used

Value

predict.textmodel_nb returns either a vector of class predictions for each row of newdata (when type = "class"), or a document-by-class matrix of class probabilities (when type = "probability") or log posterior likelihoods (when type = "logposterior").

See also

Examples

# application to LBG (2003) example data (tmod <- textmodel_nb(data_dfm_lbgexample, y = c("A", "A", "B", "C", "C", NA)))
#> #> Call: #> textmodel_nb.dfm(x = data_dfm_lbgexample, y = c("A", "A", "B", #> "C", "C", NA)) #> #> Distribution: multinomial; prior: uniform; smoothing value: 1; 5 training documents; 37 fitted features.
predict(tmod)
#> R1 R2 R3 R4 R5 V1 #> A A B C C B #> Levels: A B C
predict(tmod, type = "logposterior")
#> A B C #> R1 -2687.853 -6472.926 -7614.264 #> R2 -2687.853 -4013.332 -7147.946 #> R3 -4671.788 -2368.923 -4671.788 #> R4 -7147.946 -4013.332 -2687.853 #> R5 -7614.264 -6472.926 -2687.853 #> V1 -3212.036 -3007.763 -6381.702